

CENTRO DE ASTROBIOLOGÍA

Towards prebiotic chemistry in the interstellar medium

Izaskun Jiménez-Serra (CSIC)

ISM group:

Jesus Martin-Pintado
Victor M. Rivilla
Laura Colzi
Andres Megias Toledano
Antonio Martinez Henares
Alvaro Lopez Gallifa
Miguel Sanz-Novo (also UVA)
David San Andres
Marta Rey Montejo

CAB collaborators:

Carlos Briones/Jacobo Aguirre

External collaborators:

Astronomers:

Shaoshan Zeng (RIKEN)
Miguel Requena-Torres (U. Maryland)
Sergio Martin (ESO)
Arnaud Belloche (MPIfR)

Spectroscopists:

Paola Caselli's group (MPE) Emilio Cocinero (UPV) J. L. Alonso, E. Alonso (UVA) M. Melosso, L. Bizzocchi, C. Puzzarini (U. Bologna)

Materials physicists/chemists:

Belen Mate, Víctor Herrero (IEM)
Juan Garcia de la Concepcion (UEX)

Astrochemistry as an interdisciplinary field of research

Life: definition and characteristics

NASA's definition:

"Life is a self-sustaining chemical system capable of Darwinian evolution"

phosphorylation

Compartmentalized

phosphorylation

phosphorylation

Prebiotic Systems Chemistry

(Ruiz-Mirazo et al. 2014)

"a high diversity of precursor components was available on the prebiotic Earth and that these components could progressively turn into primordial metabolic, self-replicating, and membrane-bounded subsystems"

Work hypothesis:

Prebiotic precursors could form already in the ISM

Survival of organic prebiotic material after meteor impact possible

(Chyba & Sagan 1992; Pierazzo & Chyba 2006; McCaffrey et al. 2014)

From the ISM to the Origin of Life

FROM A DIFFUSE CLOUD TO A SUN + PLANETARY SYSTEM FROM ATOMS & SIMPLE MOLECULES TO LIFE

1- PRE-STELLAR PHASE: cold and dense gas FORMATION OF SIMPLE MOLECULES

2- PROTOSTELLAR PHASE: collapsing, warm dense gas FORMATION OF COMPLEX MOLECULES

3- PROTOPLANETARY DISK PHASE: cold and warm dense gas SIMPLE & COMPLEX MOLECULES

5- PLANET FORMATION AND THE "COMET/ASTEROID RAIN"
CONSERVATION AND DELIVERY OF OLD MOLECULES + LIFE

From the ISM to the Origin of Life

FROM A DIFFUSE CLOUD TO A SUN + PLANETARY SYSTEM FROM ATOMS & SIMPLE MOLECULES TO LIFE

Precursors of prebiotic compounds: Complex Organic Molecules (COMs)

COMs are carbon-based compounds with ≥6 atoms (Herbst & van Dishoeck 2009)

Glyceraldehyde (CH₂OHCH(OH)CHO) Glycolonitrile (HOCH₂CN)

Outline:

Complex Organic Molecules (COMs): How do they form and where are they found?

Search of COMs of prebiotic interest in the ISM

 Emergence of interstellar chemical complexity explained by Complex Network Theory

Outline:

Complex Organic Molecules (COMs): How do they form and where are they found?

Search of COMs of prebiotic interest in the ISM

 Emergence of interstellar chemical complexity explained by Complex Network Theory

COM formation on dust grains

COMs formed mainly via:

- 1. Hydrogenation (H addition; Charnley et al. 1997, 2001)
- 2. Radical-radical surface reactions (efficient at T>30 K; Garrod et al. 2008)

COM formation for T<30 K

Gas phase reactions $A + B \rightarrow C + D$

(Charnley et al. 1995; Vasyunin & Herbst 2013; Barone et al. 2015; Balucani et al. 2015; Vasyunin et al. 2017; Skouteris et al. 2017; 2018; 2019)

Skouteris et al. (2018)

COM formation for T<30 K

Additional mechanisms proposed:

- 1. Non-canonical explosions on grains (Rawlings+13; Holdship+19)
- 2. Cosmic-ray induced radical diffusion (Reboussin+2014)
- 3. Impulsive spot heating on grains by CRs (Ivlev+2015)
- 4. Sputtering of grains by CRs (Dartois+20; Wakelam+21)
- 5. Non-diffusive "in-situ" formation on grains (Chuang+20; Qasim+19; Garrod+22)

Complex Organic Molecules (COMs) ubiquitous in the ISM

- > Star forming regions: Hot Cores and Hot Corinos (Hollis+2000,2004; Beltran+2009; Belloche+2016; Jorgensen+2012; Lykke+2017)
- Molecular Outflows (Arce+2008; Codella+2015; 2017; 2020)
- Photon-Dominated Regions (Guzman+2013)
- Cold Clouds Cores and Pre-stellar Cores (Marcelino+2007; Bacmann+2012; Vastel+2014; Jimenez-Serra+2016; Taquet+2017; Agundez+2019;McGuire+2018,2021; Cernicharo+2021)
- ➤ Galactic Center GMCs
 (Martin-Pintado+2001;Requena-Torres+2006,2008;Widicus-Weaver+2017;Zeng+2018)

Complex Organic Molecules (COMs) ubiquitous in the ISM

- > Star forming regions: Hot Cores and Hot Corinos (Hollis+2000,2004; Beltran+2009; Belloche+2016; Jorgensen+2012; Lykke+2017)
- Molecular Outflows (Arce+2008; Codella+2015; 2017; 2020)
- Photon-Dominated Regions (Guzman+2013)
- Cold Clouds Cores and Pre-stellar Cores

 (Marcelino+2007; Bacmann+2012; Vastel+2014; Jimenez-Serra+2016; Taquet+2017; Agundez+2019; McGuire+2018, 2021; Cernicharo+2021)
- ➤ Galactic Center GMCs
 (Martin-Pintado+2001;Requena-Torres+2006,2008;Widicus-Weaver+2017;Zeng+2018)

Prebiotic COMs in Hot Corinos and Hot cores (ALMA)

Glycolaldehyde

(Jorgensen+12,16; Coutens+15; Taquet+15)

Formamide (Kahane+13; Coutens+16)

Methyl Isocyanate

(Ligterink+17, Martin-Domenech+17)

Glycolonitrile (Zeng+18)

Acetamide (Ligterink+18)

Acetic Acid (Jorgensen+16)

See also the GUAPOS survey toward G31.41 (Mininni+20; Colzi+21) Amino acetonitrile

(Belloche+08)

Iso-propyl cyanide (branched

molecule)(Belloche+14)

Urea

(Belloche+19)

N-methylformamide

(Belloche+17)

Urea:
a key
prebiotic
molecule
(Belloche+19)

Propylene Oxide (CH₃CHCH₂O)

Propylene
Oxide:
A chiral
molecule
(McGuire+16)

Complex Organic Molecules (COMs) ubiquitous in the ISM

- > Star forming regions: Hot Cores and Hot Corinos (Hollis+2000,2004; Beltran+2009; Belloche+2016; Jorgensen+2012; Lykke+2017)
- Molecular Outflows (Arce+2008; Codella+2015; 2017; 2020)
- Photon-Dominated Regions (Guzman+2013)
- Cold Clouds Cores and Pre-stellar Cores (Marcelino+2007; Bacmann+2012; Vastel+2014; Jimenez-Serra+2016; Taquet+2017; Agundez+2019;McGuire+2018,2021; Cernicharo+2021)
- ➤ Galactic Center GMCs (Martin-Pintado+2001;Requena-Torres+2006,2008;Widicus-Weaver+2017;Zeng+2018)

Aromatic Molecules in TMC-1

McGuire+18

GOTHAM (McGuire's group)

Indene

group)

1,2-cyanonaphtalene

1,2-cyano-cyclopentadiene

Burkhardt+21;
Mcguire+21;
Cernicharo+21a,b,c,d,e;
Lee+21; McCarthy+21;
Agundez+21;
Marcelino+21; Cabezas+21

Complex Organic Molecules (COMs) ubiquitous in the ISM

- > Star forming regions: Hot Cores and Hot Corinos (Hollis+2000,2004; Beltran+2009; Belloche+2016; Jorgensen+2012; Lykke+2017)
- Molecular Outflows (Arce+2008; Codella+2015; 2017; 2020)
- Photon-Dominated Regions (Guzman+2013)
- ➤ Dark Clouds Cores and Pre-stellar Cores

 (Marcelino+2007; Bacmann+2012; Vastel+2014; Jimenez-Serra+2016; Taquet+2017; Agundez+2019; McGuire+2018, 2021; Cernicharo+2021)
- ➤ Galactic Center GMCs
 (Martin-Pintado+2001;Requena-Torres+2006,2008;Widicus-Weaver+2017;Zeng+2018)

Widespread COM emission in the Galactic Center

G+0.693-0.03

Quiescent (no sign of star-formation) and its chemistry affected by a cloud-cloud collision

(Hasegawa+94;Sato+00; Tsuboi+15; Wu+17; Zeng+20; Armijos-Abendaño+20)

- \Box n(H₂)~4x10⁴ cm⁻³
- \Box T_{dust}<20 K
- \Box T_{gas}>100 K
- \square Low T_{ex} of the molecular gas (<15 K).
- ☐ Huge advantage for COM searches in "crowded" spectral surveys

Surveys with IRAM 30m & Yebes 40m

>170 species detected --- >50% of them are COMs

One of the most important reservoirs of COMs in the Galaxy (Requena-Torres et al. 2008; Widicus-Weaver et al. 2017; Zeng et al. 2018)

Chemical Inventory in G+0.693-0.03

Rich in COMs with:

- 1) Oxygen (-OH, -OCHO, -COOH)
- 2) Nitrogen (-CN and -NH/NH₂)
- 3) Sulfur (including -SH)

Outline:

o Complex Organic Molecules (COMs): How do they form and where are they found?

Search of COMs of prebiotic interest in the ISM

 Emergence of interstellar chemical complexity explained by Complex Network Theory

Toward the RNA-world in the ISM

Primordial RNA-world chemical scheme (Powner+2009; Patel+2015)

Amino Acids

Toward the RNA world in the ISM

Urea, 2-amino-oxazole, glyceraldehyde & dihydroxyacetone

Patel et al. (2015)

Toward the RNA world in the ISM

Urea, 2-amino-oxazole, glyceraldehyde & dihydroxyacetone

Patel et al. (2015)

Toward the RNA world in G+0.693

glyceraldehyde & dihydroxyacetone

$$H_{C}O$$
 $CH_{2}OH$
 $H-C-OH$ $C=O$
 $CH_{2}OH$ $CH_{2}OH$

Urea

$$O$$
 C
 NH_2

2-amino-oxazole

$$N$$
 NH_2

Upper limits $\chi < (0.5-1.0) \times 10^{-10}$

Urea (NH_2CONH_2) in G+0.693-0.027

First detection of urea in ISM by Belloche+19

Freq. (GHz)

 $N (NH_2CONH_2) = (6.3\pm0.1)x10^{12} cm^{-2}$

X (NH₂CONH₂) = 4.7x10⁻¹¹ wrt molecular H₂

Toward the RNA world in G+0.693

glyceraldehyde & dihydroxyacetone

$$H_{C}O$$
 $CH_{2}OH$ $C=O$ $CH_{2}OH$ $C=O$ $CH_{2}OH$ $CH_{2}OH$

Urea

$$O$$
 \parallel
 C
 NH_2

2-amino-oxazole

$$N$$
NH₂

Upper limits $\chi < (0.5-1.0) \times 10^{-10}$

Detected X ~ 5x10⁻¹¹

Upper limits $\chi < 8.0 \times 10^{-11}$

Energetic processing of urea and 2-aminooxazole

Ices of pure 2AO/urea and of 2AO/urea:H₂O mixes irradiated with UV photons and e-'s simulating CRs

-> photo-destruction rates

Urea is more resilient to irradiation than 2-amino-oxazole

The primordial RNA-world hypothesis

Concurrent formation of all four RNA ribonucleotides (pyrimidine AND purine)
Becker et al. (2019, Science, 366, 6461)

The primordial RNA-world hypothesis

Concurrent formation of all four RNA ribonucleotides (pyrimidine AND purine)
Becker et al. (2019, Science, 366, 6461)

Discovery of NH₂OH in the ISM

Probing the chemical complexity of amines in the ISM: detection of vinylamine ($C_2H_3NH_2$) and tentative detection of ethylamine ($C_2H_5NH_2$)

Shaoshan Zeng,¹ Izaskun Jiménez-Serra,² Víctor M. Rivilla,^{2,3} Jesús Martín-Pintado,²
Lucas F. Rodríguez-Almeida,² Belén Tercero,⁴ Pablo de Vicente,⁴ Fernando Rico-Villas,² Laura Colzi,^{2,3}
Sergio Martín,^{5,6} and Miguel A. Requena-Torres^{7,8}
Zeng et al. (2021)

While C₂H₅NH₂ likely forms on grains, C₂H₃NH₂ is a product of the recombination dissociation of C₂H₅NH₂ + H⁺/H₃⁺

Discovery of the simplest phospholipid head group

Rivilla, Jimenez-Serra et al. (2021), PNAS, 118, 22

NH₂CH₂CH₂OH (Ethanolamine)

 $\chi(EtA) \sim 10^{-10}$

EtA/H₂O ratio consistent with the one measured in the Almahata Sitta meteorite

Discovery of the simplest phospholipid head group

~10¹⁵ liters of EtA (i.e. Victoria Lake's capacity) could have arrived to Earth

Possibility of EtA being available in early Earth for cell membrane formation

Precursors of fatty alcohols: n-propanol

Jimenez-Serra et al. (2022), A&A, 663, A181

 $v_{LSR} (km s^{-1})$

Ultrasensitive unbiased spectral survey towards G+0.693-0.027

achieved RMS at sub-mk level

Carbonic acid (HOCOOH)

(Sanz-Novo et al. 2023)

Despite being higher in energy, only the cis-trans conformer detected $(\chi(HOCOOH) \sim 4.7 \times 10^{-11} \text{ with respect to } H_2)$

Cis-cis conf. (the lowest in energy) has a dipole moment 10 x smaller

Glycolamide (NH₂C(O)CH₂OH): an isomer of glycine detected in the ISM

(Rivilla et al. 2023)

 χ (Glycolamide) ~ 5.5x10⁻¹¹ with respect to H₂ (G+0.693 rich in amides; see Zeng et al. 2023)

The G+0.693-0.027 molecular cloud

14 new interstellar molecules since 2019

Thioformic acid

HCOSH

Rodríguez-Almeida

et al. (2021a)

Sanz-Novo et al. (2023)

Glycolamide (NH₂C(O)CH₂OH)

Rivilla et al. (2023)

What is next?

 Perform even deeper spectroscopic surveys in the Q band (30-50 GHz)

 Spectroscopic surveys at low frequencies against a bright background continuum source

Prebiotic COM searches in absorption

Feasibility study for C3 and C4 sugars with SKA

Extended COM-rich GMC (G+0.693)

Bright HII region (L source)

$$T_L = (T_{ex} - T_c - T_{bg}) \times [1 - exp(-\tau_{\nu})]$$

Predictions obtained for

SKA Band 5, but transitions

in the Q band expected to

be >10x brighter

Jimenez-Serra et al. (2022)

Prebiotic COM searches in absorption

ACES: ALMA Central Molecular Zone Exploration Survey (PI: S. Longmore)

JACKS: A JVLA Ammonia CMZ K-band Survey (PI: E. Mills)

Outline:

o Complex Organic Molecules (COMs): How do they form and where are they found?

Search of COMs of prebiotic interest in the ISM

 Emergence of interstellar chemical complexity explained by Complex Network Theory

The emergence of interstellar molecular complexity explained by interacting networks

Miguel García-Sáncheza, lzaskun Jiménez-Serra, Fernando Puente-Sánchezo, and Jacobo Aguirre

Networld: Computational framework based on Complex Network Theory to create an "artificial chemistry of networks"

(a) Sketch description of the potential evolution of a simple system formed by 4 nodes.

- Simulations start with N nodes
- Nodes interact to form more complex structures that can either connect to other structures or divide into smaller configurations
- Each complex network represents a chemical compound

Transition to complexity when the environment (B) changes

Low β = efficient division of compounds

High β = large compounds become stable

Comparison with astronomical observations

Networld mimics chemical evolution towards complexity in the ISM

(PID2019-105552RB-C41/ PID2022-136814NB-I00) LifeHUB.CSIC (PIE-202120E047)

