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| Life looks for life

As children, we fear the dark. Anything might be out. here. The unknown troubles us. Ironically, it is our fate to
live in the dark. This unexpected finding of science is only about three centuries old. Head out from the Earth in
any direction you choose, and—after an initial flash of blue and a longer wait while the Sun fades—you are
surrounded by blackness, punctuated only here and there by the faint and distant stars. Even after we are
grown, the darkness retains its power to frighten us. And so there are those who say we should not inquire too
closely into who else might be living in that darkness. Better not to know, they say. There are 400 billion stars in
the Milky Way Galaxy. Of this immense multitude, could it be that our humdrum Sun is the only one with an
inhabited planet? Maybe. Maybe the origin of life or intelligence is exceedingly improbable. Or maybe civilizations
arise all the time, but wipe themselves out as soon as they are able. Or, here and there, peppered across space,
orbiting other suns, maybe there are worlds something like our own, on which other beings gaze up and wonder
as we do about who else lives in the dark...Life is a comparative rarity. You can survey dozens of worlds and find
that on only one of them does life arise and evolve and persist... If we humans ever go to these worlds, then, it
will be because a nation or a consortium of them believes it to be to its advantage—or to the advantage of the

human species... In our time we've crossed the Solar System and sent four ships to the stars...

But we continue to search for inhabitants.

We can't help it. Life looks for life.




SPASA 2011 - Astrobiology Summer School




SPASA 2011 - Astrobiology Summer School
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LARGE INTERFEROMETER FOR EXOPLANETS

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Exoplanets are hard

We might have found 5000 in the past 25+ years ...
...but there is still so much to be discovered





http://www.youtube.com/watch?v=0yNzSwlnQ2Q&t=10




Earth-twin at 10 pc
Tphmin"m?pm' @5
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| Roadmap
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Square One

What is the question we want to answer?
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| Start: Scientific Objective

SCIENCE & EXPLORATION

Voyage 2050 sets
sail: ESA chooses
future science mission
themes

“Therefore, launching a Large mission enabling the
characterisation of the atmosphere of temperate
exoplanets in the mid-infrared should be a top priority
for ESA within the Voyage 2050 timeframe.”

“This would give ESA and the European community the
opportunity to solidify its leadership in the field of
exoplanets, [...]’

“Being the first to measure a spectrum of the direct
thermal emission of a temperate exoplanet in the mid
infrared would be an outstanding breakthrough that
could lead to yet again another paradigm-shifting
discovery.”

ESA Senior Committee Report
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Why MIR?
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| The mid-IR opportunity
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Pressure [bar]

The mid-IR opportunity

Lo- Konrad et al. 2022: LIFE Il 6 Planet radius
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The Large Interferometer For Exoplanets
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https://docs.google.com/file/d/1PGn15vf-PHEMpsaNIwqQ6XkI0zt4zqEB/preview
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 wmb Assess habitability

2 - 3.5 m aperture diameter ==p Search for biosignatures

=) Study the divérsity of tefrestrial planets

5 % throughput

4-18.5 um spectral coverage,
R=20-50

2.5 yrs search phase
2.5yrs characterlzatlon phase
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LARGE INTERFEROMETER FOR EXOPLANETS

Does LIFE find planets?

And if yes, how many?

24



Detection Yield
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| How far away are they?
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| What about already known planets?

G) 876 G) 514 HD 147513 betPic Sun

HD 10647

G) 667 C

Me v Ma S U N
4.6 Gyr 3 J § B Gyr
.
“ @0 oo g
b
-
s E -
0.017 Gyr 212 Gyr <
S
& o L o)
=

0.3 Gyr

G) 422

s b
@ -]
0.8 Gyr '
d e ()
1 Gyr =
o @ o ® 3

G) 433

1.4 Gyr

b 4
2 Gyr
& @ 3

[ ... 212 known exoplanets within 20 pc. Of these, bb are also accessible to HWO]

G) 273
«
=
L]

(S

o

g b

o

G) 180
® !
D o
D ~

HIP 38594
&
°

27



LARGE INTERFEROMETER FOR EXOPLANETS

Sanity Check

Would we even find ourselves (in time)?

28






LIFE Ill &V: Earth & Earth in time, science requirements
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| LIFE Ill &V: Earth & Earth in time, science requirements
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Biosignatures

Sniffing Alien Atmospheres

32



LIFE IV: Phosphine “survey”

F1h

Jupiter sized
G star 10 pc
500 K

~10h

Super Earths
M star 5 pc
CO2, H2 - dominated
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G star 10 pc
up to 300 ppm PH3




| Phosphine

Planet flux F; [ph s~*m~2um~1]

Super-Earth, H;-rich, around M-dwarf at 5 pc, t,ps = 10.0 h
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| Nitrous Oxide

Planet flux Fj [ph s7'm~2um~1]
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| Methylated Halogens

Planet flux F; [ph s~*m~2um=1]
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| Methylated Halogens

Planet flux F; [ph s~*m~2um=1]
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| How does it scale? Trade offs

20.0 40 4 —— Descope 1m
175 - 35 ] — Baseline 2m

—— Goal 3.5m
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LARGE INTERFEROMETER FOR EXOPLANETS

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

What if we don't find anything?

How significant is a null result?



| Upper limit on n_life

Applied to the LIFE mission

1.0 —— Best Fit observed (all negatives)
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| Upper limit on n_life

Applied to the LIFE mission

1.04, —— Best Fit observed (all negatives)
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Upper limit on n_life

Best Fit nops
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e “Independent”(i.e.
diff <5%) of priors

e ~20-80 to constrain
to upper limits
below 0.2/0.1

e (Caveat: assuming
100% confidence in
each observation
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| Statistical Evidence

Venus Detectability - Assumption: 25.0% Venus

000000000000 00000000000000 0000000000000 0000000000
Only take results better than 85.0% N =1

--=-- 'Ground truth' - data with 'real' distribution
—— Uniform Bayes-Laplace ('flat') 1.
—— Jeffrey's 0.5
—— Kerman (2011) 1/3
—— 'Extreme' 0.05
—— Perfect Observation - this 'draw’
e True Negative 1
® True Positive 0
False Negative 0
False Positive 0
® Meh 0

0.0 0.2 0.I4 0:6 0;8 1.'0
Fraction of Venus-Likes in your favorite, well-defined survey sample
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Canit find Aliens?

Technosignatures with LIFE
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| Atmospheric Technosignatures

Planet flux Fj [ph s~ m~3]
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Take home message

Reasons you should love LIFE

46



What you can do for LIFE

-models of interesting exoplanets or trends >> LIFEsim
-temporal/dynamic changes, e.qg. reaction to flares
-from individual planets to demographics

-many other “jobs": project office, (sub)-WG/project leads,
student-/master projects, ...

47



LIFE take home message

In the next decades we will have the technologies to systematically
search for potential biosignatures in our neighbourhood.

LIFE is a European lead initiative and one of the most promising
conceptsin this field.

If you want to know more:

Check our webpage: www.life-space-mission.com
Sign up for newsletter: life@phys.ethz.ch

Twitter: @LIFE_telescope

48
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LIFE take home message

In the next decades we will have the technologies to systematically
search for potential biosignatures in our neighbourhood.

LIFE is a European lead initiative and one of the most promising
conceptsin this field.

If you want to know more:
Check our webpage: www.life-space-mission.com

Sign up for newsletter: life@phys.ethz.ch . .
Twitter: @LIFE_telescope Online All-hands meeting

Today & Tomorrow
15-18 CET
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| LIFE mission concept

LIFE is an ambitious space mission with unparalleled scientific capabilities optimized for the direct detection
and atmospheric characterization of hundreds of exoplanets, dozens of which will be terrestrial, temperate
and possibly hospitable to life as we know it
As a formation-flying mid-infrared (nulling) interferometer LIFE is located in L2 and consists of 4 collector
spacecraft with 2-3.5 m apertures and a combiner spacecraft
The observing wavelength range is 4-17.5 pm (requirement)/ 3-20 pm(goal)and the required spectral
resolution is 35(req.)/ 50(goal)
The total mission lifetime is 5-6 years (requirement)

e Search phase (2.5 years): detection of hundreds of planets

e Characterization phase (up to 3.5 years): detailed investigation of atmospheric diversity and search for

biosignatures

e Otherscience(upto20%;tbc.)
Significant progress has been made in relevant key technologies since mid-2000s (incl. ESA's Proba-3 mission,
Herschel, and JWST/MIRI) and additional R&D is currently ongoing

50
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Backup Slides
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Cryogeni'c components

» Photometric output

Nulling output
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, —> Photometric output

High sensitivity beam combination
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Why Space?
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Why do we need a space mission?
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EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Why Nulling Interferometry?

And how does it work?
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Nulling Interferometry
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Nulling Interferometry
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Nulling Interferometry Level 2
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Nulling Interferometry Level 3
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Nulling Interferometry Level 4

Adding more apertures

3 telescopes 4 telescopes

c linear TTN orthogonal TTN triangular TTN DCB X-Array
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Fig. 4-1

Detection and imaging properties of three and four telescope configurations. The first

row shows the aperture configuration, the second row the receive characteristic of
the instrument after applying phase chopping and the third row the correlation map
for image reconstruction.

DARWIN system assessment study - EADS Astrium
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Exoplanet
Detection Yield

Monte Carlo simulations based on
Kepler statistics (SAG13) and
stars within ~20 pc

Assuming
2.5 years total search phase
5% total instrument
throughput
10 h slew between targets
20% general overhead

Total LIFE exoplanet yield (2.5-year search phase)
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Mean total number of detectable planets
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Exoplanet yield predictions

Simulation Parameters

Number of collector spacecraft
Mirror diameter
Baseline length

Wavelength coverage

Mission duration

Noise Sources

4
2m

10-600m
4-18.5 um

2.5 yrs(search phase)
+2.5yrs(char. phase)

Astrophysical only (star, exo-
and local-zodiacal dust)

Total number of detectable exoplanets: 550

6.0 :
Number of detectable planets O W
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Completeness = Pr(detection | target observed)
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ADec [mas]

Exoplanet yield predictions

100

0

-100

Signal extraction

Dannert & Ottiger et al. 2022: LIFE Il

100 0 -100
ARA [mas]

For Earth-analogue at 10 pc,
b6 h integration time

—F 120

- 100

Cost Value

50 -

Detected number of planets in the

eHZ

40*8

26122

Reject ny5p = 0.2 with 3-o

Reject 51 = 0.5 with 3-o

Based on:
Quanzetal. 2022: LIFE |

M-type, 2m, 5%

Kammerer et al. (subm.): LIFE VIII
FGK-type, 3.5 m, 5 % 5
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| A Challenging Sample

Small Angular Resolution

High contrast to star

Low total flux

Earth-twin at 10 pc
23phmin"m?pm™'@ 10 um
Tphmin"m?pm'@5pm

@10 pm

Contrast

ELT/METIS
IWA @10 um

JWST IWA
@10 um

10—2 .

1074+

10—6 .

10—8 .

10—10 .

HZ planets
in orange

P-Pop simulation (SAG13 based),
see Kammerer & Quanz(2018)

10—12

103

1074

1073 1072
Angular Separation [arcsec]

10°
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LIFE IX:

Venus and clouds

Wavelength[micron]

H,0
Co,
>
= )
L
H,0
CO-
7 6 10 12 14 16 18 20
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