El teorema de Bell i els protocols de informació quàntica independents dels dispositius

Antonio Acín
Professor ICREA a l'ICFO-Institut de Ciències Fotòniques, Castelldefels

Institut d'Estudis Catalans, 23 de maig de 2023, Barcelona

Research Fund

Entangled states - from theory to technology

Alain Aspect, John Clauser and Anton Zeilinger have each conducted groundbreaking experiments using entangled quantum states, where two particles behave like a single unit even when they are separated. Their results have cleared the way for new technology based upon quantum information.

Bell's Theorem: a bit of history

Bell's theorem solves the question of whether classical models like those introduced by Einstein-Podolsky-Rosen (EPR) can account for quantum predictions.

Bell's Theorem: a bit of history

Bell's theorem solves the question of whether classical models like those introduced by Einstein-Podolsky-Rosen (EPR) can account for quantum predictions.

THE NEW YORK TIMES, SATURDAY, MAY 4, 1935.

Bell's Theorem: a bit of history

Bell's theorem solves the question of whether classical models like those introduced by Einstein-Podolsky-Rosen (EPR) can account for quantum predictions.

THE NEW YORK TIMES, SATURDAY, MAY 4, 1935.

While we have thus shown that the wave function does not provide a complete description of the physical reality, we left open the question of whether or not such a description exists. We believe, however, that such a theory is possible.

Quantum entanglement

Quantum entanglement: quantum particles can be correlated in ways that do not have a classical analogue.

1. Outcomes of measurements performed on two distant entangled particles are random.
2. Nevertheless, the coincide, no matter the distance between the two particles.

Quantum entanglement

Quantum entanglement: quantum particles can be correlated in ways that do not have a classical analogue.

1. Outcomes of measurements performed on two distant entangled particles are random.
2. Nevertheless, the coincide, no matter the distance between the two particles.

Quantum entanglement

Quantum entanglement: quantum particles can be correlated in ways that do not have a classical analogue.

1. Outcomes of measurements performed on two distant entangled particles are random.
2. Nevertheless, the coincide, no matter the distance between the two particles.

The ping-pong ball test

If a "quantum" effect can be explained with ping-pong balls, then the effect is no quantum.

OR

If one observer knows the colour of the ball, the colour of the other ball is immediately determined.

The ping-pong ball test

If a "quantum" effect can be explained with ping-pong balls, then the effect is no quantum.

OR

If one observer knows the colour of the ball, the colour of the other ball is immediately determined.

The main difference is that in quantum theory the properties (colours) of the particles are not predetermined, the theory does not explain the experiment as a combination of situations with
 deterministic assignments.

Bell's Theorem: a bit of history

The EPR article suggested that quantum physics was an incomplete theory: it proposed the existence of a "better", more complete theory making the same predictions as quantum physics.

Bell's Theorem: a bit of history

The EPR article suggested that quantum physics was an incomplete theory: it proposed the existence of a "better", more complete theory making the same predictions as quantum physics.

This theory must satisfy the principles of "locality" and "realism", which are expected to be satisfied by any reasonable physical theory.

Bell's Theorem: a bit of history

The EPR article suggested that quantum physics was an incomplete theory: it proposed the existence of a "better", more complete theory making the same predictions as quantum physics.

This theory must satisfy the principles of "locality" and "realism", which are expected to be satisfied by any reasonable physical theory.

Bell's Theorem implies that an EPR model is unable to reproduce all the correlations observed when measuring (entangled) quantum particles. That is, it proves the incompatibility between EPR models satisfying locality and realism and quantum physics.

Bell's Theorem: a bit of history

The EPR article suggested that quantum physics was an incomplete theory: it proposed the existence of a "better", more complete theory making the same predictions as quantum physics.

This theory must satisfy the principles of "locality" and "realism", which are expected to be satisfied by any reasonable physical theory.

Bell's Theorem implies that an EPR model is unable to reproduce all the correlations observed when measuring (entangled) quantum particles. That is, it proves the incompatibility between EPR models satisfying locality and realism and quantum physics.

The experimental demonstration of Bell's Theorem proved that EPR models cannot explain all correlations observed in nature.

However, this is not a talk on History of Physics...

It is a talk on the current understanding of Bell's Theorem.

Let's start by some basic ideas.

However, this is not a talk on History of Physics...

It is a talk on + my current understanding of Bell's Theorem.

Let's start by some basic ideas.

Correlations and causality

It can be argued that the main scientific question in any scientific discipline is to understand which causes are behind some observed correlations:

Correlations and causality

It can be argued that the main scientific question in any scientific discipline is to understand which causes are behind some observed correlations:
if an observer performs an action in a given location at a given moment in time, how will this affect actions in another point in space-time?

Correlations and causality

Causality is the main concept behind this idea: correlations cry out for explanations!

Correlations and causality

Causality is the main concept behind this idea: correlations cry out for explanations!

If one observes correlations between two events, A and B, there are two possible explanations:

B

Correlations and causality

Causality is the main concept behind this idea: correlations cry out for explanations!

If one observes correlations between two events, A and B, there are two possible explanations:

1. One event caused the other:

Correlations and causality

Causality is the main concept behind this idea: correlations cry out for explanations!

If one observes correlations between two events, A and B, there are two possible explanations:

1. One event caused the other:

2. The correlations have a common cause:

Causal networks

Natural language to represent physical experiments.

Causal networks

Natural language to represent physical experiments.

Causal networks

Natural language to represent physical experiments.

Causality constraints

The causal connections impose constraints on the observed statistics.

Causality constraints

The causal connections impose constraints on the observed statistics. Example:

$$
P(a, b, c \mid x, y, z)
$$

Causality constraints

The causal connections impose constraints on the observed statistics. Example:

$$
P(a, b, c \mid x, y, z)
$$

$\sum_{c} P(a, b, c \mid x, y, z)=P(a, b \mid x, y, z)=P(a, b \mid x, y)$
$\sum_{b} P(a, b, c \mid x, y, z)=P(a, c \mid x, z)=P(a \mid x) P(c \mid z)$

The Bell scenario

Alice Bob

- A source prepares two systems (particles) and distributes them to two distant observers, Alice and Bob.

The Bell scenario

- A source prepares two systems (particles) and distributes them to two distant observers, Alice and Bob.
- The two distant observers apply measurements to each particle. The choices of measurements are labeled by x and y and the outputs by a and b.

The Bell scenario

- A source prepares two systems (particles) and distributes them to two distant observers, Alice and Bob.
- The two distant observers apply measurements to each particle. The choices of measurements are labeled by x and y and the outputs by a and b.
- We have not specified anything in the experiment: whether the particles are quantum, whether they have a given energy,... NOTHING. We just provide labels to the actions in the experiment. The language so far is theory independent.

The Bell scenario

The Bell scenario

Causal model for the experiment

The Bell scenario

Experimental realization of the causal model

Deterministic causal models

Outputs observed at a given point in space-time are defined by deterministic functions of their causes.

Deterministic causal models

Outputs observed at a given point in space-time are defined by deterministic functions of their causes. Example:

Bell inequalities

Bell inequalities

- Bell inequalities are inequalities constructed from linear combination of the observed statistics which are satisfied by classical correlations:

$$
\sum_{a, b, x, y} c_{a, b, x, y} P(a, b \mid x, y) \leq \beta_{L}
$$

- No quantum law is used in the previous discussion. Bell inequalities have nothing to do with quantum physics. But they are satisfied by classical EPR models.

Example: CHSH Bell inequality

Example: CHSH Bell inequality

CHSH = Clauser Horne Shimony Holt

John Clauser

Example: CHSH Bell inequality

$$
\text { CHSH }=P\left(A_{1}=B_{1}\right)+P\left(A_{1}=B_{2}\right)+P\left(A_{2}=B_{1}\right)+P\left(A_{2} \neq B_{2}\right)
$$

Example: CHSH Bell inequality

$$
\begin{gathered}
\text { CHSH }=P\left(A_{1}=B_{1}\right)+P\left(A_{1}=B_{2}\right)+P\left(A_{2}=B_{1}\right)+P\left(A_{2} \neq B_{2}\right) \\
\square_{\mathrm{A}}=\square_{\mathrm{B}} \quad \square_{\mathrm{A}}=\Delta_{\mathrm{B}} \quad \Delta_{\mathrm{A}}=\square_{\mathrm{B}} \quad \Delta_{\mathrm{A}} \neq \Delta_{\mathrm{B}}
\end{gathered}
$$

Example: CHSH Bell inequality

$$
\begin{gathered}
\text { CHSH }=P\left(A_{1}=B_{1}\right)+P\left(A_{1}=B_{2}\right)+P\left(A_{2}=B_{1}\right)+P\left(A_{2} \neq B_{2}\right) \\
\underbrace{\square_{\mathrm{A}}=\square_{\mathrm{B}} \quad \square_{\mathrm{A}}=\Delta_{\mathrm{B}}}_{\square_{\mathrm{A}}=\Delta_{\mathrm{B}}} \quad \Delta_{\mathrm{A}}=\square_{\mathrm{B}} \quad \Delta_{\mathrm{A}} \neq \Delta_{\mathrm{B}}
\end{gathered}
$$

Example: CHSH Bell inequality

$$
\begin{gathered}
\text { CHSH }=P\left(A_{1}=B_{1}\right)+P\left(A_{1}=B_{2}\right)+P\left(A_{2}=B_{1}\right)+P\left(A_{2} \neq B_{2}\right) \\
\underbrace{\square_{\mathrm{A}}=\square_{\mathrm{B}} \quad \square_{\mathrm{A}}=\Delta_{\mathrm{B}}}_{\mathrm{A}} \quad \Delta_{\mathrm{A}}=\square_{\mathrm{B}} \quad \Delta_{\mathrm{A}} \neq \Delta_{\mathrm{B}}
\end{gathered}
$$

$$
\Delta_{\mathrm{A}}=\Delta_{\mathrm{B}}
$$

Example: CHSH Bell inequality

CHSH $=P\left(A_{1}=B_{1}\right)+P\left(A_{1}=B_{2}\right)+P\left(A_{2}=B_{1}\right)+P\left(A_{2} \neq B_{2}\right)$

$$
\Delta_{\mathrm{A}}=\Delta_{\mathrm{B}} \longleftarrow \text { Contradiction!! }
$$

Example: CHSH Bell inequality

CHSH $=P\left(A_{1}=B_{1}\right)+P\left(A_{1}=B_{2}\right)+P\left(A_{2}=B_{1}\right)+P\left(A_{2} \neq B_{2}\right) \leq 3$

And now, finally, quantum physics come into play because...

And now, finally, quantum physics come into play because...

Measurements on correlated quantum particles may violate a Bell inequality!!

Quantum Bell inequality violation

$$
\left|\Phi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)
$$

Classical values are now replaced by operators.

Quantum Bell inequality violation

$$
\left|\Phi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)
$$

Classical values are now replaced by operators.

$$
\begin{aligned}
\text { CHSH } & =P\left(A_{1}=B_{1}\right)+P\left(A_{1}=B_{2}\right)+P\left(A_{2}=B_{1}\right)+P\left(A_{2} \neq B_{2}\right) \\
& =2+\sqrt{2} \approx 3.4>3!!
\end{aligned}
$$

Quantum Bell inequality violation

$$
\begin{aligned}
\text { CHSH } & =P\left(A_{1}=B_{1}\right)+P\left(A_{1}=B_{2}\right)+P\left(A_{2}=B_{1}\right)+P\left(A_{2} \neq B_{2}\right) \\
& =2+\sqrt{2} \approx 3.4>3!!
\end{aligned}
$$

Quantum correlations cannot be explained by deterministic models satisfying the experimental causality constraints.

Quantum causality

Bell nonlocal correlations can be explained by a quantum causal model, but not by the causal deterministic counterpart.

Quantum causality

Bell nonlocal correlations can be explained by a quantum causal model, but not by the causal deterministic counterpart.

Bell experiments

Entanglement can be observed between any pair of quantum particles.

Bell experiments

Entanglement can be observed between any pair of quantum particles.
If the goal is to send these particles to two distant places, better use quanta of light \rightarrow entangled photons.

First Bell experiments

Experimental Test of Local Hidden-Variable Theories*

Stuart J. Freedman and John F. Clauser

Department of Physics and Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 (Received 4 February 1972)

John Clauser

First Bell experiments

Alain Aspect

Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A New Violation of Bell's Inequalities
Alain Aspect, Philippe Grangier, and Gérard Roger
Institut d'Optique Théorique et Appliquée, Laboratoire associé au Centre National de la Recherche Scientifique, Université Paris -Sud, F-91406 Orsay, France
(Received 30 December 1981)

Experimental Test of Bell's Inequalities Using Time-Varying Analyzers
Alain Aspect, Jean Dalibard, ${ }^{(a)}$ and Gérard Roger Institut d'Optique Théorique et Appliquée, F-91406 Orsay Cédex, France
(Received 27 September 1982)

First Bell experiments

Alain Aspect

Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment:

 A New Violation of Bell's InequalitiesAlain Aspect, Philippe Grangier, and Gérard Roger
Institut d'Optique Théorique et Appliquée, Laboratoire associé au Centre National de la Recherche Scientifique, Université Paris -Sud, F-91406 Orsay, France
(Received 30 December 1981)

Experimental Test of Bell's Inequalities Using Time-Varying Analyzers

Alain Aspect, Jean Dalibard, ${ }^{(a)}$ and Gérard Roger Institut d'Optique Théorique et Appliquée, F-91406 Orsay Cédex, France
(Received 27 September 1982)

Experimental quantum teleportation

Experimental quantum teleportation

Dik Bouwmeester, Jian-Wei Pan, Klaus Mattle, Manfred Eibl, Harald Weinfurter \& Anton Zeilinger
Institut für Experimentalphysik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria

Bell experiments

The setup should enforced the constraints of the causal network.

Bell experiments

The setup should enforced the constraints of the causal network.

Bell experiments

The setup should enforced the constraints of the causal network.

Often space-like considerations are used to exclude non-wanted causal connections.
IMO: not necessarily stronger than other type of considerations. Example: choose the settings in a Bell test with Twitter and the Valladolid phone book. There are many ways of excluding causal constraints, none with 100% confidence. Recall that this possible extra causal links do not lead to "noticeable" effects.

Let's stop for a while...

- If you are not surprised by this result, my talk is a failure.
- Bell inequality violation is the phenomenon where quantum physics more radically departs from our classical intuition.
- Bell inequality violations have been observed in many labs: it is confirmed that EPR classical models cannot explain nature.
- Can we use this phenomenon for something?

Quantum Information Theory

What happens when we encode information on quantum particles?

Novel information applications become possible thanks to quantum effects, e.g. more powerful computers and secure cryptography.

Change of paradigm: physics matters!

Quantum Information Theory

What happens when we encode information on quantum particles?

Novel information applications become possible thanks to quantum effects, e.g. more powerful computers and secure cryptography.

Change of paradigm: physics matters!

Yet, the role of Bell nonlocality in standard quantum information theory is quite marginal.

Quantum information technologies

Quantum Computer

Quantum Simulator

QRNG

Quantum certification

Is this a quantum computer?

Is this cryptographically secure?

Does this properly simulate a quantum system?

Is this quantum random?

Can one certify the presence of (quantum) randomness?

How can one certify a quantum device from its outputs?

From certification to Bell theorem

Alice

$$
p(a b \mid x y) \quad \text { Bob }
$$

From certification to Bell theorem

Alice

$$
p(a b \mid x y) \quad \text { Bob }
$$

From certification to Bell theorem

Alice

$$
p(a b \mid x y) \quad \text { Bob }
$$

This is nothing but a Bell test, in which local measurements are performed on two separated systems, prepared by the source.

One of the main lessons of Bell theorem

Alice

$$
p(a b \mid x y) \quad \text { Bob }
$$

The statistics of an experiment, a.k.a. correlations, depends on the physical properties of the measured systems.

One of the main lessons of Bell theorem

Alice

$$
p(a b \mid x y) \quad \text { Bob }
$$

The statistics of an experiment, a.k.a. correlations, depends on the physical properties of the measured systems.

The observation of a Bell violation certified that Alice and Bob have quantum (entangled) devices.

Bell certified QRNG

Problem 1: certification

- Good randomness is usually verified by a series of statistical tests.
- There exist chaotic systems, of deterministic nature, that pass all existing randomness tests.
- Do these tests really certify the presence of randomness? It is well known that no finite set of tests can do it.
- Do these tests certify any form of quantum randomness? Classical systems pass them!

RANDU

RANDU is an infamous linear congruential pseudorandom number generator of the Park-Miller type, which has been used since the 1960s.

Three-dimensional plot of 100,000 values generated with RANDU. Each point represents 3 subsequent pseudorandom values. It is clearly seen that the points fall in 15 two-dimensional planes.

Problem 2: privacy

The memory-stick attack

The provider has access to a proper RNG. The provider uses it to generate a long sequence of good random numbers, stores them into a memory stick and sells it as a proper RNG to the user. The numbers generated by the user look random. However, they can be perfectly predicted by the adversary

Definition of randomness

Definition of randomness

N bits are perfectly random if they are unpredictable, not only to the user of the device, but to any observer.

Definition of randomness

N bits are perfectly random if they are unpredictable, not only to the user of the device, but to any observer.

This definition is satisfactory both from a fundamental and applied perspective.

- From a fundamental perspective it is difficult to argue that a process is random if there could exist an observer able to predict its outcomes.
- From a practical perspective, by demanding that the results should look random to any observer, the generated randomness is guaranteed to be private.

Can the presence of randomness be guaranteed by any physical mechanism?

Quantum Bell violation

- Bell inequalities are conditions satisfied by classical models in which measurement outputs are pre-determined.
- Correlations observed when measuring entangled states may lead to a violation of Bell inequality and, therefore, do not have a classical counterpart. These correlations are usually called non-local.
- If some observed correlations violate a Bell inequality, the outcomes could not have pre-determined in advance \rightarrow They are random.
- If some observed correlations violate a Bell inequality, they cannot be reproduced classically \rightarrow The devices are quantum.

Certified randomness

Ask the provider not one but two devices. If a Bell inequality violation is observed, the outputs contain some randomness.

Certified randomness

Ask the provider not one but two devices. If a Bell inequality violation is observed, the outputs contain some randomness.
The certification is device-independent, in the sense that it does not rely on any assumption on the internal working of the device.

Certified randomness

The randomness in the outputs can be estimated from the amount of Bell violation. At no violation, there is no randomness. One random bit at maximal violation.

Certified randomness

The randomness in the outputs can be estimated from the amount of Bell violation. At no violation, there is no randomness. One random bit at maximal violation.

A quantum information theory based solely on Bell nonlocality?

DI quantum information processing

Develop a new form of quantum information theory in a scenario where the users' devices are just seen as (quantum) black boxes processing classical information. The resulting protocols have self-certification.

Observed statistics

$$
p\left(a_{1} \ldots a_{N} \mid x_{1} \ldots x_{N}\right)
$$

DI quantum information processing

Observed statistics

$$
p\left(a_{1} \ldots a_{N} \mid x_{1} \ldots x_{N}\right)
$$

Clearly, if some correlations are local $\boldsymbol{\rightarrow}$ they can be reproduced classically \rightarrow no improvement can be expected over classical information theory.

Bell nonlocality is a necessary condition for any task in this scenario.

Conclusions

- Bell inequalities are conditions satisfied by classical models in which measurement outputs of non-communicating observers are pre-determined.

Conclusions

- Bell inequalities are conditions satisfied by classical models in which measurement outputs of non-communicating observers are pre-determined.
- Correlations observed when measuring entangled states may lead to a violation of Bell inequality and, therefore, do not have a classical counterpart.

Conclusions

- Bell inequalities are conditions satisfied by classical models in which measurement outputs of non-communicating observers are pre-determined.
- Correlations observed when measuring entangled states may lead to a violation of Bell inequality and, therefore, do not have a classical counterpart.
- If some observed correlations violate a Bell inequality, the outcomes could not have pre-determined in advance \rightarrow They are random.

Conclusions

- Bell inequalities are conditions satisfied by classical models in which measurement outputs of non-communicating observers are pre-determined.
- Correlations observed when measuring entangled states may lead to a violation of Bell inequality and, therefore, do not have a classical counterpart.
- If some observed correlations violate a Bell inequality, the outcomes could not have pre-determined in advance \rightarrow They are random.
- If some observed correlations violate a Bell inequality, they cannot be reproduced classically \rightarrow The devices are quantum.

Conclusions

- Bell inequalities are conditions satisfied by classical models in which measurement outputs of non-communicating observers are pre-determined.
- Correlations observed when measuring entangled states may lead to a violation of Bell inequality and, therefore, do not have a classical counterpart.
- If some observed correlations violate a Bell inequality, the outcomes could not have pre-determined in advance \rightarrow They are random.
- If some observed correlations violate a Bell inequality, they cannot be reproduced classically \rightarrow The devices are quantum.
- A novel type of quantum information theory, known as device-independent quantum information processing, is possible when using quantum Bell nonlocality.

Conclusions

- Bell inequalities are conditions satisfied by classical models in which measurement outputs of non-communicating observers are pre-determined.
- Correlations observed when measuring entangled states may lead to a violation of Bell inequality and, therefore, do not have a classical counterpart.
- If some observed correlations violate a Bell inequality, the outcomes could not have pre-determined in advance \rightarrow They are random.
- If some observed correlations violate a Bell inequality, they cannot be reproduced classically \rightarrow The devices are quantum.
- A novel type of quantum information theory, known as device-independent quantum information processing, is possible when using quantum Bell nonlocality.
- The implementation of device-independent protocols is experimentally challenging, but appears feasible with near-future quantum technologies.

