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The Nobel Prize in Physics 2021 was awarded "for groundbreaking 
contributions to our understanding of complex systems" with one half 
jointly to Syukuro Manabe and Klaus Hasselmann "for the physical 
modelling of Earth's climate, quantifying variability and reliably predicting 
global warming" and the other half to Giorgio Parisi "for the discovery of 
the interplay of disorder and fluctuations in physical systems from 
atomic to planetary scales." 



Around 1980, Giorgio Parisi discovered hidden patterns in disordered complex 
materials. His discoveries are among the most important contributions to the 
theory of complex systems. They make it possible to understand and describe 
many different and apparently entirely random materials and phenomena, not 
only in physics but also in other, very different areas, such as mathematics, 
biology, neuroscience and machine learning.



Les tres figures de la motivació del Nobel

Every time many identical discs are squeezed together, a new irregular pattern is
formed despite them being squeezed in exactly the same way. What governs the result?
Giorgio Parisi discovered a hidden structure in such complex disordered systems, 
which these discs represent, and found a way of describing them mathematically.

Mathematics for complex disordered systems

a) b)
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?

When one spin points upward and the other 
downward, the third one cannot satisfy them 
both at the same time, because neighbouring 
spins want to point in different directions. How 
do the spins find an optimal orientation? Giorgio 
Parisi is a master at answering these questions 
for many different materials and phenomena. 

Frustration 
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A spin glass is a metal alloy where iron 
atoms, for example, are randomly mixed into 
a grid of copper atoms. Each iron atom 
behaves like a small magnet, or spin, which 
is affected by the other magnets around it. 
However, in a spin glass they are frustrated 
and have difficulty choosing which direction 
to point. Using his studies of spin glass, 
Parisi developed a theory of disordered and 
random phenomena that covers many other 
complex systems.

Spin glass

Iron

Copper
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Una mica d’història….
Als anys 70 apareixen uns materials magnetics   
anomenats vidres d’espí (spin glasses)

806 K. Binder and A. P. Young: Spin glasses

deals with Ising-type spins or vector spins, and the nature
of the magnetic anisotropy is important.

A. Spin glass systems

Exchange interactions

The "classical" spin glass materials are noble metals
(Au, Ag, Cu, Pt) weakly diluted with transition metal ions,
such as Fe or Mn. The picture one has in mind is then
that the scattering of the conduction electrons at the spins
leads to an indirect exchange interaction (see Fig. 5). This
RKKY interaction (Ruderman and Kittel, 1954; Kasuya,
1956; Yosida, 1957) oscillates strongly with distance R,

cos(2kzR +yo)J(R)=Jo
(kFR )

(2.1)

Here Jo and yo are constants, and kF is the Fermi wave
number of the host metal. Since the distances between
the spins are random, some of the interactions of a con-
sidered spin with other ones will be positive, favoring
parallel alignment, some negative, favoring antiparallel
alignment; thus no spin alignment can be found that is
satisfactory to all exchange bonds. This "frustration" of
some of the bonds (Toulouse, 1977) will appear as the
second basic ingredient, together with the frozen-in disor-
der, of spin glass behavior; this point will be discussed in
more detail in Sec. III.E below.
In the limit where the alloy is very dilute, positive and

negative signs of the exchange in Eq. (2.1) will be equally
likely, and hence one might approximate Eq. (2.1) by
J(R)=+Jol(kFR), where Jo is another constant and
the signs are chosen at random. For such a symmetric
distribution P(J)=P(—J) of bond strengths J; the mag-
netic susceptibility in the entire paramagnetic phase
would be a simple Curie law 7 ~ T '; in addition, due to
the decay of the interaction strength as the minus third
power of distance, the so-called "concentration scaling
laws" (Souletie and Tournier, 1969, 1971) hold.
It is now well established, however, that this picture is

far too idealized. An attempt has recently been made by

Kx (gpz ) S(S+1) g(x) (2.2)

with the Curie-Weiss temperature 8(x)

9(x)= gJ(R)P„(R) .
3k~

(2.3)

Here N is the total number of atoms per unit volume, and
x is the concentration of magnetic atoms. It is assumed
that the latter have magnetic moment gp~S and spin
quantum number S independent of. concentration and
temperature (while this is certainly true for magnetic mo-
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Morgownik and Mydosh (1983a, 1983b) to infer the actu-
al exchange interaction J(R) for several spin glass sys-
tems from a careful analysis of high-temperature suscep-
tibility data. At least for values of R up to the fifth-
neighbor distance, J(R) is not in agreement with Eq.
(1.2), since the conduction electron polarization around
single Mn impurities [inferred from Cu NMR measure-
ments by Cohen and Slichter (1978)] has a rather different
spatial dependence (see Fig. 6).
The situation is even more complicated as the same

analysis reveals (Morgownik and Mydosh, 1983a, 1983b)
a complicated interplay with atomic short-range order. It
appears that deviations from ideal random mixing occur
in such a manner as to enhance the probability of neigh-
boring distances where J(R) in Fig. 6 is ferromagnetic in
all four systems investigated (CuMn, AuMn, AuFe, PtMn).
For CuMn, this conclusion is also corroborated by earlier
neutron scattering work (Cable et al. , 1982). These devia-
tions from random mixing are very clearly seen in the
complicated concentration dependence in the high-
temperature susceptibility. In fact, in leading orders in
reciprocal temperature, X can be expressed as (see, for ex-
ample, Binder, 1982a)
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FIG. 5. Schematic sketch of magnetic moments randomly di-
luted in a metallic Inatrix, and the resulting RKKY exchange
integral plotted as a function of distance. From Binder (1977a).

inter atomic distance (units of lattice constant)

FIG. 6. Estimated exchange parameters J as a function of dis-
tance for four spin glass systems. The dashed line represents
the RKKY conduction electron polarization around a Mn ion in
Cu, according to Cohen and Slichter (1978). From Morgownik
and Mydosh (1983a).
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Eij = − Jijsisj
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Transicio de fase i fenomens irreversibles
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Figure 4: FC- and ZFC-magnetisation (higher and lower curve respectively) vs. temperature of
Cu(Mn13.5%), H =1 Oe (taken from [9]). For a such a low field the magnetization is proportional
to the susceptibility.

• The magnetic susceptibility that we obtain when the system is constrained to remain in a
valley. In the limit of zero magnetic field this susceptibility is given by χLR = β(1− qEA).

• The total susceptibility magnetic susceptibility (the system is allowed to change state as
an effect of the magnetic field). In the limit of zero magnetic field this susceptibility is
given by χeq = β

∫
dq P (q)(1 − q) ≤ β(1 − qEA) .

Both susceptibilities are experimentally observable.

• The first susceptibly is the susceptibly that you measure if you add an very small magnetic
field at low temperature. The field should be small enough in order to neglect non-linear
effects. In this situation, when we change the magnetic field, the system remains inside a
given state and it is not forced to jump from a state to an other state and we measure the
ZFC (zero field cooled) susceptibility, that corresponds to χLR.

• The second susceptibility can be approximately measured doing a cooling in presence of
a small field: in this case the system has the ability to chose the state which is most
appropriate in presence of the applied field. This susceptibility, the so called FC (field
cooled) susceptibility is nearly independent from the temperature and corresponds to χeq.

Therefore one can identify χLR and χeq with the ZFC susceptibility and with the FC sus-
ceptibility respectively. The experimental plot of the two susceptibilities is shown in fig. (4).
They are clearly equal in the high temperature phase while they differ in the low temperature
phase.

The difference among the two susceptibilities is a crucial signature of replica symmetry
breaking and, as far as I known, can explained only in this framework. This phenomenon is due
to the fact that a small change in the magnetic field pushes the system in a slightly metastable
state, which may decay only with a very long time scale. This may happens only if there are
many states which differs one from the other by a very small amount in free energy.
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Transicio de fase i fenomens irreversibles
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Comparacio amb un ferromagnet (Ising 2D)
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Therefore, once we have obtained expectation values of the square of the magnetization 
and the absolute value of the magnetization itself, the first Binder ratio B1 can be easily 
found.

3. Results

Monte Carlo simulations of the Ising model using the Metropolis algorithm were 
performed according to the implementation described by other authors (see [7, 8] for details). 
Typically, in the present simulations, 50000 Monte Carlo sweeps (MCS) were discarded for 
equilibration and there were 100 bins used, each with 50000 MCS to obtain expectation 
values of <m2>, <|m|> and χ with estimates of their errors. Figure 1 shows magnetic 
susceptibility dependence on temperature for lattice sizes L = 16, 32, 64, 128. The data for L 
= 128 have been obtained with only 20 bins, so Monte Carlo error bars are more pronounced 
near the critical temperature (its position is denoted by the dashed vertical line) than for 
smaller lattices studied here (where errors are comparable to data point sizes on the plot). The 
coupling here is taken to be constant (J = J0 = 1.0).

Fig. 1. The magnetic susceptibility χ versus temperature 
T. Note the logarithmic scale for χ. The dashed vertical 
line shows the position of the critical temperature TC. 

The inset shows the shape of the magnetic susceptibility 
χ for the lattice of size L = 128 for the given range of 

temperatures

The corresponding analysis of the Binder ratio is shown in Figure 2. Note, that as 
expected, the first Binder ratio B1 is independent of the lattice size at TC. The inset in Figure 

2 shows that in more detail. The horizontal dotted line represents the asymptotic value 
π
2  



Que fa el calor específic?

K. Binder and A. P. Young: Spin glasses
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cally over about one-half order of magnitude only, and
their data points have large error bars. Furthermore, near
Tf their exponent g is about —,', and the applied field
might affect the relaxational behavior directly. In our
opinion, the data are again evidence for a broad spectrum
of relaxation times, and hence a nonexponential decay of
the relaxation function, but one should be cautious about
drawing any more definite conclusions.
Emmerich et al. (1985), analyzing zero-field pSR data

on CuMn spin glasses, suggest that the data can only be
explained by the onset of a spatially inhomogeneous local
"static" order parameter ("static" again is meant on the
time scale of the experiment). They also give evidence for
spatial inhomogeneity of relaxation times and suggest that
the formation of small regions of ordered spin starts at
T=1.6Tf. Emmerich et a/. (1985) do not detect any
critical fluctuations near Tf.

3. Specific heat

l I l I l i
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FIG. 13. Comparison of correlation times of CuMn, AuFe, and
AgMn spin glasses, as determined by zero-field pSR, to the de-
cay time at which the spin-correlation function measured by
neutron spin echo (Fig. 12) decays to 1/e in CuMn with 5 at. %
Mn. The neutron experiment was performed by Mezei and Mu-
rani (1979), pSR data for AgMn are due to Heffner et al.
(1982). Correlation times and temperatures for different speci-
rnens are scaled by the freezing temperatures in this figure.
From Uemura (1981b).

(iii) In longitudinal-field pSR one proceeds as in zero-
field pSR, but measures the relaxation as a function of
the applied longitudinal field. The idea behind this tech-
nique (Uemura, Huang, et a/. , 1981; Uemura, Nishiyama
et a/. , 1981;Uemura and Yamazaki, 1982) is to study the
competition between the applied field and the "static"
component of the internal (random) field. The field
dependence clearly reveals that relaxation functions ap-
plying a single effective relaxation time are inadequate.
In this spirit, Emmerich et a/. (1983) tried to fit a rec-
tangular spectrum of relaxation times to the zero-field
pSR data on CuMn spin glasses. MacLaughlin et al.
(1983) observe that in AgMn spin glasses far below freez-
ing the relaxation rate observed as a function of field H
can be fitted to a power law, R +— , and suggest that
this behavior indicates a nonexponential decay of spin
correlations with time t &, /=0. 54+0.05. As a further
support of this interpretation, they relate their results to
recent zero-field NMR data of Alloul et a/. (1983) and
Alloul (1983) for CuMn spin glasses. MacLaughlin et a/.
(1983) claim that "the present data therefore agree quanti-
tatively with the prediction of mean-field dynamic
theories. " However, a glance at their Fig. 1 immediately
reveals that they observe a relaxation rate variation typi-
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FIG. 14. Magnetic contribution of the specific heat of CuMn
spin glasses with 2.79 at. % Mn plotted vs temperature in vari-
ous magnetic fields. From Brodale et al. (1983).

The specific heat of spin glasses exhibits a rather broad
peak at temperatures exceeding the freezing temperature
by about 20%; at T & Tf it varies approximately linearly
with T; in a magnetic field, the specific-heat peak is pro-
gressively rounded. . A few typical examples of this
behavior are shown in Fig. 14 for Cu with 2.79 at. % Mn
(Brodale et a/. , 1983) and in Fig. 15 for Eu„Sr& „S
(Meschede et a/. , 1980). A similar behavior has been seen
in CuMn spin glasses at other concentrations (Zimmer-
mann and Hoare, 1960; avenger and Keesom, 1976; Mar-
tin, 1978, 1979, 1980a; Fogle et a/. , 1978), in AuFe (Mar-
tin, 1980b), in PtMn spin glasses (Nieuwenhuys et a/. ,
1973; Sacli et al. , 1974; Kimishima et al. , 1977; Wasser-
mann, 1982), in amorphous Zr3oCu60Fe~o (Lecomte et a/. ,
1981) and GdA12 (Coey et a/. , 1977), in ThGd spin
glasses (Sereni et a/. , 1979), etc.
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La primera teoria de vidre despi (1975)
Sam Edwards and Phil Anderson (Premi Nobel de Física, 1977)

E({s}) = − ∑
(i,j)

Jijsisj

J’s aleatoris i distribuïts d’acord a una Gaussiana: Jij = 0 ; J2
ij = J2

ZJ = ∑
{s}

exp(−
E

kBT ) ; FJ = − kBT log ZJ

Física estadística del model

Com sumar sobre configuracions  si les J’s son aleatories?{s}
Qüestió



Calculem  ?ZJ o be FJ

FJ = − kBT log ZJ

Truc de la replica log x = lim
n→0

xn − 1
n

Zn
J = ZJ ZJ . . . ZJ

Espai configuracional replicat n vegades: 𝒮n = {s(1)
i ∪ s(2)

i ∪ . . . s(n)
i }



Parametre d’ordre de repliques

En el model de Ising el parametre d’ordre es la magnetizacio, m = ⟨s⟩

Qab = ⟨sa sb⟩ ; a, b = 1,..,n

Per un vidre d’espí el parametre d’ordre és una matriu :n × n

Solució més simple o simetria de rèpliques, Qab = q , ∀a, b

En el model de Ising, q = m2

ENTROPIA NEGATIVA I TERMODINAMICAMENT INESTABLE



      CAL TRENCAR LA 
SIMETRIA DE REPLIQUES

 ha de dependre de a i bQab



Trencament de simetria de repliques (RSB)
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Figure 8: Three different form of the function P (q) and the related function S(q). Delta functions
are represented as a vertical arrow

Generally speaking the fluctuation-dissipation theorem is not valid in the off-equilibrium
regime. In this case one can use stochastic stability to derive a relation a among statics properties
and the form of the function S(C) measured in off-equilibrium [20, 21, 18]:

−
dS

dC
=

∫ C

0
dqP (q) ≡ X(C) . (35)

In fig. (8) we show three main different kinds of dynamical response S(C), that correspond
to different shapes of the static P (q) (which in the case of spin glasses at zero magnetic field
should be replaced by P (|q|)). Case A correspond to systems where replica symmetry is not
broken, case B to one step replica symmetry breaking, which should be present in structural
glasses and case C to continuous replica symmetry breaking, which is present in spin glasses.

The validity of these relation has been intensively checked in numerical experiments (see for
example fig. (9)).

In spin glasses the relaxation function has been experimentally measured many times in the
aging regime, while the correlation function has not yet been measured: it would be a much
more difficult experiment in which one has to measure thermal fluctuations. Fortunately enough
measurements of both quantities for spin glasses are in now progress. It would be extremely
interesting to see if they agree with the theoretical predictions.

For reasons os time I shall not discuss the generalization of the previous arguments to the
case of a spin glass in presence of a time dependent magnetic field. I only remark that in this
case the correlation function is directly related to the Birkhausen noise, which as far a I know,
has never been measured in spin glasses.
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In spin glasses the relaxation function has been experimentally measured many times in the
aging regime, while the correlation function has not yet been measured: it would be a much
more difficult experiment in which one has to measure thermal fluctuations. Fortunately enough
measurements of both quantities for spin glasses are in now progress. It would be extremely
interesting to see if they agree with the theoretical predictions.
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80’s: dels vidres d’espí a les xarxes neuronals, la 
optimització combinatòria, als medis granulars, etc..

 Marc Mezard, Giorgio Parisi, Miguel Virasoro Any 1987

Spin glasses: Experimental facts, theoretical concepts,
and open questions

K. Binder
Institut fur Physik, Universitat Mainz, D-8500 Mainz, West Germany"

A. P. Young
Department of Physics, University of California, Santa Cruz, California 95084
and Department of Mathematics, Imperial College of Science and Technology, London SX728Z England
This review summarizes recent developments in the theory of spin glasses, as well as pertinent experimental
data. The most characteristic properties of spin glass systems are described, and related phenomena in oth-
er glassy systems (dielectric and orientational glasses) are mentioned. The Edwards-Anderson model of
spin glasses and its treatment within the replica method and mean-field theory are outlined, and concepts
such as "frustration, " "broken replica symmetry, " "broken ergodicity, " etc., are discussed. The dynamic
approach to describing the spin glass transition is emphasized. Monte Carlo simulations of spin glasses and
the insight gained by them are described. Other topics discussed include site-disorder models, phenomeno-
logical theories for the frozen phase and its excitations, phase diagrams in which spin glass order and fer-
romagnetism or antiferromagnetism compete, the Neel model of superparamagnetism and related ap-
proaches, and possible connections between spin glasses and other topics in the theory of disordered
condensed-matter systems.
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Correlated spin glass generated by structural disorder in the amorphous Dy6Fe748» alloy
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Magnetic properties of the amorphous Dy-Fe-8 alloy are studied in terms of the correlated-spin-glass
approach of Chudnovsky et aI. Features predicted by the theory are clearly observed in the experiment.
It is shown that the magnetization law may be presented in the form where it is determined by the di-
mensionless correlation function of structural disorder, C(y), only. The analysis of the magnetization
curve allows one to distinguish between different models of disorder in amorphous solids. Experimental
data on Dy-Fe-B are in favor of C=exp( ——'y ).

The structure of amorphous solids remains a challeng-
ing theoretical and experimental problem. While there
are many models of amorphous disorder, ' one picture is
commonly kept in mind. It displays the process of
solidification as a diffusion-driven rearrangement of
atoms towards the minimum energy state. The length of
the structural order in a solid R, is, then, determined by
the average size of the volume in which atoms can suc-
cessfully rearrange until the dift'usion coefIIicient becomes
exponentially small as temperature goes down. Depend-
ing on the rate of cooling, one obtains solids ranging from
monocrystals to disordered networks of atoms. Rapid
solidification has been used to obtain a number of amor-
phous ferromagnetic alloys. In this paper we present a
method that allows one to distinguish between diA'erent
models of structural disorder in amorphous ferromag-
nets.
As was noticed long ago, the behavior of the magneti-

zation on approach to saturation may be analyzed to elu-
cidate structural properties of an inhomogeneous materi-
al. Becker and Doring, based upon early results for
monocystals, showed that the magnetocrystalline an-
isotropy of randomly arranged crystallites gives a H
term in approaching saturation. Brown demonstrated
that interaction of the magnetization with point, linear,
and layered sources of spin pinning give H ', H
and H contributions to the magnetization law, respec-
tively. Chikazumi later noticed that the H ' law for
localized pinning sources must change to H in high
fields. Vast literature on micromagnetism, which con-
tains these and other results, has been reviewed by
Brown and Vonsovsky.
In a more recent time, micromagnetic calculations

were revived to describe amorphous ferromagnets. '

Instead of considering dift'erent types of spin pinning, a
more universal approach has been applied, which
operates with structural correlation functions. Magnetic
properties of amorphous alloys are commonly described
within the random anisotropy model. ' ' The basic idea
of the model is that spin interactions in an amorphous
ferromagnet are similar to these in a ferromagnetic crys-
tal. The essential difterence, however, is that instead of
having global anisotropy axes, an amorphous ferromag-
net has local easy axes whose direction n (x) varies ran-
domly in space. This direction is determined by the local
arrangement of atoms. Consequently, directions of n (x)
at di6'erent points must rapidly become uncorrelated at
distances greater than R, . The corresponding correla-
tion function C(x) is of particular interest to us, since it
rejects the short-range structure of amorphous solid. In
the past magnetic measurements were used' ' to obtain
the value of R, in amorphous ferromagnets. The purpose
of this work is to extract from magnetic measurements
information about the form of C(x).
Let A(erg/cm) and E„(erg/cm ) be the exchange and

random anisotropy strengths, respectively, averaged over
the distance R, . It has been shown' that the magnetic
behavior of the random anisotropy system changes drast-
ically with the value of the dimensionless parameter
A,„=(2/15)'~ (H„/H, „), where H„=2K/M isothe ran-
dom anisotropy field, and H„=22/MOR, . For A. ))1
(strong anisotropy) and low temperature, directions of
spins are frozen along their local anisotropy axes. The
arrow representation of this state is then similar to that
of a spin glass. At A, ( 1 (weak anisotropy) the ferromag-
netic correlation length R& becomes greater than R„'

Felix, necessito un teòric pels experiments que fem en vidres d’espí. El meu 
col.laborador a Roma, Dino Fiorani, coneix un tal Parisi que és molt bo..…

Javier Tejada

Al juny 1989 vaig a Roma, una aventura, sense casa ni res…m’hi vaig estar 1 mes in 
després desde 1990 a 1994 (5 anys) compartint despatx amb Parisi a Tor Vergata 



My first two papers with Giorgio

46 ASYMMETRIC LI I ILE SPIN-GLASS MODEL 5349

ing reason to discard other values. In fact, we have found
the exponent a=—', to be compatible with the results
shown in the Figs. 3 and 6. For us, this is an interesting
open question which merits further investigation along
this line.
We have also done extensive numerical simulations for

the symmetric Little model which suggest that the results
we have shown for the asymmetric Little model are also
valid for the symmetric case. In the symmetric case the
error bars are smaller and it could be interesting to test
the numerical results presented here against theoretical
predictions. The theoretical study of the symmetric case
presents more technical diSculties because the spectrum
of fluctuations around the SK solution is more complex
but we think that the main physics and the nature of the
finite-size corrections will follow the same lines as in the
asymmetric case.
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APPENDIX

We present the spectrum of eigenvalues for the de
Almeida —Thouless matrix 6 at first order of replica-
symmetry breaking. These have been obtained following
the process described in Ref. 14. If P,b is the order-
parameter matrix, let us suppose, at first order of
replica-symmetry breaking, that P,b =p& when the repli-
cas a and b belong to the same subblock of size m and po
otherwise.
Then, we define the following averages:

rz=(o, obo, oz)(a, b, Ek, c,d Hk2)=(( tanh f ) ),
r3= (o,o bo, o& )(a, b Ek)c Eked Ek3)
= ( tanh f( tanhf } ),
r4=(o, o.bo, oz )(a Ek(b Ek2c Ek3dEk4)
=((tanhf) ) .

Then, we construct the different elements for the stability
matrix 6, which are

G(,b)(,b) =P) = 1—p (1—p ) )/(ab) Ek,
G(,()(,b) =P()=1—p (1—p() )/a Ek, b Ek2,
G(,b)(„)=Qo p (po —p) )/a &k) b, c &k2,
G(,b)(„)=Q, =P (p, —p, )/a, b, c Ek,
G(,()(„)=Q2=P'(po —p )o/ a&k)b&kzcEk3

G(ab)(ac) Q3 P (pop) p0)/ ab Ek)c Gk2
G(,b)(«) =Ro=13 (p, ro)/a, b, c,—d Ek,
6(,&)(«) =R ) =P (pop) r, )/a—,b, c &k) d Ek2,

or a Ek~b c d Ek2,
G(,&)(«) =Rz =P (p) r2)/a, b, Ek—)c,d Ek2,
G(,b)(«) =R3=p (po r2)/a, c&k)b, d &k2,
G(,b)(«) =R4=P (pop) r3)/a, b G—k) c Ek2d Gk3

or a Ek&b Gk2c, d Ek3

6(,„)(«)=R,=P (po r, ) /a E k) b, c E—k2d Ek3
G(,b)(«) =R6=& (po r4)/a Ek)b Ek2cEk3d Ek4 .
The spectrum of eigenvectors contains three invariant

sectors. We present the eigenvalues and degeneracies for
finite n. Finally, the analytic continuation n~0 has to
be performed.

1. Longitudinal invariant sector

y 2~ ' e cosh y, zA=
D (z)

where f (y, z) =P[po~ z+(p) —po)' y] and
D(z)= f e cosh [f(y,z)] .—~ (2n. )'

(Al)

(A2)

(A3)

It contains two eigenvalues each one with degeneracy
equal to 1. These are obtained by solving a second degree
equation:

A +D+')/( A D) +4BC—
2

If k, ,k2, . . . define difference subblocks of the hierarchi-
cal matrix P,b, we construct the following correlation
functions:

p) =(o,ob )(a,bEk)=( tanh f ),
po=(o, ob)(a Ek„b&kz)=(( tanhf) ),
ro=(o, obo, oz)(a, b, c,d Ek)=( tanh f ),
r) =(&,o(o,oq)(a, b, c&k),d Fk2)=( tanh3f tanhf ),

(n —m)(m —1)+ R2,2

8 =2(n —m)Q3+(n —m)(m —2)R)
(n m)(n 2—rn)—+ R4,2

C=2(m —1)Q3+(m —2)(m —1)R,
(n —2m)(m —1)+ R4,2

(A4)
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Figure 8: Three different form of the function P (q) and the related function S(q). Delta functions
are represented as a vertical arrow

Generally speaking the fluctuation-dissipation theorem is not valid in the off-equilibrium
regime. In this case one can use stochastic stability to derive a relation a among statics properties
and the form of the function S(C) measured in off-equilibrium [20, 21, 18]:

−
dS

dC
=

∫ C

0
dqP (q) ≡ X(C) . (35)

In fig. (8) we show three main different kinds of dynamical response S(C), that correspond
to different shapes of the static P (q) (which in the case of spin glasses at zero magnetic field
should be replaced by P (|q|)). Case A correspond to systems where replica symmetry is not
broken, case B to one step replica symmetry breaking, which should be present in structural
glasses and case C to continuous replica symmetry breaking, which is present in spin glasses.

The validity of these relation has been intensively checked in numerical experiments (see for
example fig. (9)).

In spin glasses the relaxation function has been experimentally measured many times in the
aging regime, while the correlation function has not yet been measured: it would be a much
more difficult experiment in which one has to measure thermal fluctuations. Fortunately enough
measurements of both quantities for spin glasses are in now progress. It would be extremely
interesting to see if they agree with the theoretical predictions.

For reasons os time I shall not discuss the generalization of the previous arguments to the
case of a spin glass in presence of a time dependent magnetic field. I only remark that in this
case the correlation function is directly related to the Birkhausen noise, which as far a I know,
has never been measured in spin glasses.
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Figure 3: The function P (q) = PJ(q) after average over many samples (D=4, L=3. . . 10) .

functions is an effect of the finite simulation time. It is evident that the function PJ(q) is non-
trivial and it looks like a sum a smoothed delta functions. It is also evident that the function
PJ(q) changes dramatically from system to systems.

It is interesting to see what happens if we average over the samples. We can this define

P (q) = PJ (q) . (9)

Of course, if PJ(q) depends on J , we have that

PJ(q1)PJ(q2) ≡ P (q1, q2) "= P (q1)P (q2) . (10)

In fig. (3) we show the average over many samples of PJ(q) in the D = 4 case (a similar
picture holds in D = 3). In this way we obtain a smooth function, with two picks which are
slightly shifted and becomes sharper and sharper when the size of the system becomes larger. It
seems quite reasonable that when the system becomes infinite this peak evolves toward a delta
function which corresponds to the contribution coming from two configurations σ and τ which
belongs to the same state.

4 Experimental evidence of replica symmetry break-

ing

Replica symmetry breaking affects the equilibrium properties of the system and in particular
the magnetic susceptibility. For example let us consider a system in presence of an external
constant magnetic field, with Hamiltonian given by:

H[σ] = H0[σ] +
∑

i

hσi . (11)

As soon as replica symmetry is broken we can define two magnetic susceptibilities which are
different:
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FIG. 3. Critical behavior of the infinite-volume data. The
solid line is the best fit to Eq. (7) for j $ 1.8, the dotted line
is the leading term from the same fit, the dotted-dashed line is
the best fit to Eq. (9) for j $ 2.2.

we expect multiplicative logarithmic corrections to
Eq. (7). Our data fit well to

xSGsjd ≠ blj
22hl slogjdr (9)

for jm . 2, giving bl ≠ 1.30 6 0.03, hl ≠ 20.36 6
0.03, r ≠ 20.36 6 0.06 sQ . 0.9d (see also Fig. 3).
(iii) When we fit our data to

jsT d ≠ fj expsgjyTsd , (10)

we find that s increases continuously with jm, from
s ¯ 3 to s ¯ 9 [20]. Even assuming that s stabilizes
for higher j, we believe that a value s . 9 is implau-
sibly large. In fact, Eq. (10) implies a renormalization
group (RG) transformation dTydl ~ Ts11 (el being the
RG scale factor), while for T ! 0 (at the lower criti-
cal dimension) we expect dTydl ≠ a2T2 1 a3T3 1 . . .
(a2 ≠ 0 in the phenomenological RG theory of Ref. [21]).
In conclusion, we have shown that FSS is verified in the

3D Ising spin glass and that the correlation length diverges
at a finite temperature. Whether this is a conventional con-
tinuous phase transition (in which case the lower critical
dimension is probably close to three) or a transition to a
line of critical points is still not known.
We thank A. Pelissetto, A. P. Young, and O. C. Martin

for useful discussions. This work was supported by the
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[20] With 1 # j # 9.6 we get s ≠ 3.1 6 0.1, similar to
Refs. [4,5] where the largest j considered was j ¯ 10.

[21] W. L. McMillan, J. Phys. C 17, 3179 (1984).
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Universal Finite-Size Scaling Functions in the 3D Ising Spin Glass
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Sergio Caracciolo
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We study the three-dimensional Edwards-Anderson model with binary interactions by Monte Carlo

simulations. Direct evidence of finite-size scaling is provided, and the universal finite-size scaling
functions are determined. Monte Carlo data are extrapolated to infinite volume with an iterative
procedure for correlation lengths up to j ¯ 140. The infinite-volume data are consistent with a
conventional power-law singularity at finite temperature Tc. Taking into account corrections to scaling,
we find Tc ≠ 1.156 6 0.015, n ≠ 1.8 6 0.2, and h ≠ 20.26 6 0.04. The data are also consistent
with an exponential singularity at finite Tc, but not with an exponential singularity at zero temperature.
[S0031-9007(99)09407-7]

PACS numbers: 75.10.Nr, 64.60.Fr, 75.40.Mg, 75.50.Lk

The critical properties of the Ising spin glass in three
dimensions are still not very well understood. Numerical
simulations have led to some progress [1,2], but have been
hampered by technical difficulties. Large-scale Monte
Carlo (MC) simulations at correlation length j ¯ 10 lat-
tice units [3–5] are consistent with both a continuous phase
transition with power-law divergence of j at finite tem-
perature T ≠ Tc and an exponential divergence at T ≠ 0,
which is expected at the lower critical dimension. High-
statistics MC simulations of smaller systems [6–8] give
certain evidence of a Tc fi 0 transition with an ordered
spin glass phase below Tc, but cannot exclude either an ex-
ponential divergence at T ≠ 0 or a line of critical points at
T # Tc fi 0 [6,8,9], as in the Kosterlitz-Thouless theory
of the 2D XY model. Understanding whether an ordered
spin glass phase exists in three dimensions is clearly an is-
sue of major interest.
In this work, we study the 3D Ising spin glass with an

approach, based on finite-size scaling (FSS) and MC simu-
lations in the paramagnetic phase, introduced in Ref. [10]
(see Ref. [11] for similar methods) and thus far applied to
nondisordered systems. Let us summarize our main re-
sults. (i) We provide a direct test of the FSS hypothesis,
independent of the nature of the divergence in the infi-
nite system. In particular we determine, for the first time
to our knowledge, the universal FSS functions. (ii) We
demonstrate the effectiveness of an iterative procedure to
extrapolate the MC data to infinite volume that allows us
to reach j ¯ 140. (iii) Exploiting the higher range of j,
we show that an exponential divergence at T ≠ 0 is ex-
cluded, but we still cannot decide between a power-law
divergence at Tc fi 0 and a line of critical points termi-
nating at Tc fi 0. (iv) Under the hypothesis of power-law
divergence, we show that corrections to scaling are impor-
tant and we estimate Tc and the critical exponents.

Model and FSS method.—We consider the 3D
Edwards-Anderson model, whose Hamiltonian is

H ≠ 2
X

kxyl
sxJxysy , (1)

where sx are Ising spins on a simple cubic lattice of linear
size L with periodic boundaries, and Jxy are independent
random interactions taking the values 61 with probability
1
2 . The sum runs over pairs of nearest neighbor sites.
Let jsT , Ld be a suitably defined finite-volume correla-

tion length, and let O sT , Ld be any singular observable,
such as jsT , Ld itself or the spin glass susceptibility (see
below). Then FSS theory [12] predicts that

O sT , Ld
O sT , `d

≠ fOfjsT , `dyLg , (2)

where fO is a universal function and corrections to FSS
are neglected. From Eq. (2), one obtains the relation

O sT , 2Ld
O sT , Ld

≠ FOfjsT , LdyLg , (3)

where FO is another universal function and only finite-
volume observables are involved. Our approach works
as follows (see Ref. [10] for details). We make MC runs
at numerous pairs sT , Ld, sT , 2Ld and we plot O sT , 2Ldy
O sT , Ld versus jsT , LdyL. If all of these points fall with
good accuracy on a single curve—thus verifying the ansatz
(3)—we choose a smooth fitting function FO . Then, using
the functions Fj and FO , we extrapolate the pair sj,O d
iteratively from L ! 2L ! 22L ! · · · ! `.
Computational details.—We simulate the model in

Eq. (1) with the heat-bath algorithm. We measure qx ≠
sxtx and q ≠ L23

P
x qx from two independent replicas

ss, td with the same Jxy . We choose as a definition of
jsT , Ld the second-moment correlation length
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Long-Range Anomalous Decay of the Correlation in Jammed Packings
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We numerically study the structure of the interactions occurring in three-dimensional systems of hard
spheres at jamming, focusing on the large-scale behavior. Given the fundamental role in the configuration
of jammed packings, we analyze the propagation through the system of the weak forces and of the variation
of the coordination number with respect to the isostaticity condition, ΔZ. We show that these correlations
can be successfully probed by introducing a correlation function weighted on the density-density
fluctuations. The results of this analysis can be further improved by introducing a representation of
the system based on the contact points between particles. In particular, we find evidence that the weak
forces and the ΔZ fluctuations support the hypothesis of randomly jammed packings of spherical particles
being hyperuniform by exhibiting an anomalous long-range decay. Moreover, we find that the large-scale
structure of the density-density correlation exhibits a complex behavior due to the superimposition of two
exponentially damped oscillating signals propagating with linearly depending frequencies.

DOI: 10.1103/PhysRevLett.127.038001

Introduction.—Amorphous packings of nearly incom-
pressible particles, such as marbles and pebbles, have been
the object of an intense investigation during the past
decades as they represent a suitable benchmark for studying
a broad range of dense-packing and optimization problems
[1,2]. This rising interest led to the development of many
experiments [3–5] and simulations [6–8] that made pos-
sible an extensive study of the features of these systems.
Moreover, this field appeared to be the perfect environment
to apply the theories of frustrated interactions [9]. In
particular, the application of the replica theory [10] led
to the elaboration of an exact analytical solution valid in the
limit of high-dimensional packings [11–13].
We focus on athermal packings of frictionless hard spheres

(HSs) compressed until particles come into mechanical
contact with their nearest neighbors. The trapped spheres
form a rigid network and cannot explore the surrounding
environment (ergodicity breaking). Under these conditions,
the system enters a phase of matter known as “jamming”
[14,15]. It has been hypothesized that saturated jammed
systems (no space to add another particle) are hyperuniform
[16], implying that their radial distribution function (RDF)
tends to zero from negative values as a power law [17]
gðrÞ − 1 ∝ r−4. Even though the tendency of jammed
packings to hyperuniformity has been observed (with devia-
tions from the postulated behavior) [18,19], such power-law
scaling of the pair correlation function has never been
directly measured.
In this framework, we find evidence of hyperuniformity

in the long-range correlation of the forces -between

adjacent particles and the deviation of the number of
contacts per particle from the average value ΔZ ¼
Z − hZi. On the one hand, jammed packings exhibit a
unique force network [20] whose long-range fluctuations
demand study. On the other hand, it has been shown that
ΔZ exhibits interesting features at jamming [21–23] and
that the fluctuations of the coordination number σ2Z for a
fixed ΔZ are similar to those of density hyperuniformity
[24]. The research for a static observable exhibiting a
nontrivial behavior close to jamming is motivated by the
existence of a corresponding long-ranged dynamical
response. It has been shown [21,25,26] that a local
perturbation to the position of a pair of adjacent particles,
i.e., breaking the contact between particles, produces a
response propagating through the system up to a maximum
length, the “response length,” ξR that diverges at jamming
[27]. The main hindrance to this analysis is represented by
the strong statistical noise exhibited by the correlation
functions in the long range and superimposing to the
(weak) signal of interest. To overcome this problem, we
define a suitable pair correlation function to point out the
long-range behavior of the observables by filtering out the
interfering signals. Moreover, we introduce a representa-
tion of the interparticle network based on the contact points
between particles instead of their centers of mass. We show
that the shift to a system of fictive particles improves
the resolution of the correlation function and is fundamen-
tal in identifying the long-range features of the jammed
packings.
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Dynamic Scaling of Growing Interfaces
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A model is proposed for the evolutior. of the profile of a growing interface. The deterministic
growth is solved exactly, and exhibits nontrivial relaxation patterns. The stochastic version is stud-
ied by dynamic renormalization-group techniques and by mappings to Burgers's equation and to a
random directed-polymer problem. The exact dynamic scaling form obtained for a one-dimensional
interface is in excellent agreement with previous numerical simulations. Predictions are made for
more dimensions.

PACS numbers: 05.70.Ln, 64.60.Ht, 68.35.Fx, 81.15.Jj

Many challenging problems are associated with
growth patterns in clusters' and solidification fronts. '
Several models have been proposed recently to
describe the growth of smoke and colloid aggregates,
flame fronts, tumors, etc. ' It is generally recognized
that the growth process occurs mainly at an "active"
zone on the surface of the cluster, with interesting
scaling properties. ' However, a systematic analytic
treatment of the static and dynamic fluctuations of the
growing interface has been lacking so far.
In this paper we propose a model for the time evolu-

tion of the profile of a growing interface, and examine
its properties. Guided by the ideas of universality we
write down the simplest nonlinear, local differential
equation governing the growth of the profile applicable
to such processes as vapor deposition4 or the Eden
model. ' The analysis of this equation is considerably
simplified by mappings to two different, albeit more
familiar, forms. One is the hydrodynamic problem of
the Burgers's equation, and the other is a directed
polymer in a random environment. The deterministic
growth of the profile can in fact be obtained exactly,
and its long-time relaxation behavior exhibits very in-
teresting patterns related to the shock waves in
Burgers's equation. 6 The stochastic growth is treated
by dynamic renormalization-group techniques. For a
one-dimensional interface a fluctuation-dissipation
theorem9 exists, leading to an exact dynamic exponent
z =—,'. This result is in excellent agreement with pre-
vious numerical simulations of ballistic aggregation'
and Eden clusters. " For two-dimensional interfaces,
the mapping to the random directed-polymer problem
is used to make an efficient indirect numerical simula-
tion with the result z —1.5. A nontrivial behavior is
also predicted for the static fluctuations in this case.

The interface profile, suitably coarse-grained, is
described by a height h(x, t). As usual, it is con-
venient to ignore overhangs so that h is a single-valued
function of x. The simplest nonlinear Langevin equa-
tion for a local growth of the profile is given by'2

The first term on the right-hand side describes relaxa-
tion of the interface by a surface tension v. The
second term is the lowest-order nonlinear term that
can appear in the interface growth equation, and is
justified later on with the Eden model as an example.
Edwards and Wilkinson'3 have studied Eq. (1) without
the nonlinear term, but we demonstrate that such a
term is necessary, and responsible for the unusual
properties of the growing interface. Higher-order
terms can also be present, but they are irrelevant, and
will not modify the universal scaling properties. The
noise q(x, t) has a Gaussian distribution with
(7l(x, t)) =0, and
(q(x, t )q(x', t') ) = 2D5~(x —x') 6(t —t'),

although the actual form of the distribution is ir-
relevant. In principle there is also a velocity term,
which is removed by choice of an appropriate moving
coordinate system. Note that Eq. (I) is invariant
under translations h lt +const, and obeys the infini-
tesimal reparametrization

h+a X, X X+Xat,
which describes the tilting of the interface by a small
angle.
To justify the nonlinear term in Eq. (1), consider

the growth of an Eden cluster5 taking place by addition
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Stochastic resonance in climatic change 
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ABSTRACT 
An amplification of random perturbations by the interaction of non-linearities internal to the 
climatic system with external, orbital forcing is found. This stochastic resonance is investigated 
in a highly simplified, zero-dimensional climate model. It is conceivable that this new type of 
resonance might play a role in explaining the lo5 year peak in the power spectra of paleoclimatic 
records. 

1. Introduction 

The dominant feature of quaternary climate 
records is the lo5 year peak in their power 
spectrum (Hays et al., 1976), which corresponds 
roughly to the alternation between glacial and 
interglacial stages. During the last few years many 
attempts have been made to clarify whether this 
peak is due mainly to external causes, such as 
variations of the insolation, or to internal mech- 
anisms, such as oceanic and atmospheric feed- 
backs or volcanic eruptions. 

Energy balance models (EBMs) are a useful 
tool in approaching the problem. These are the 
simplest possible models of the climatic system 
capable of incorporating some of the physical 
mechanisms believed to play a role in the time 
scales of interest. Those versions of EBMs studied 
heretofore exhibited some remarkable climatic 
properties such as multiple state equilibria. They 
failed, however, to explain the lo5 year peak. We 
present in Fig. 1 a typical power spectrum of 
paleoclimatic variations for the last 700 000 years. 
A strong peak is present at a periodicity of lo5 
years, while smaller peaks can be noted at periods 
of 4 x lo4 and 2 x lo4 years. 

As suggested by Milankovich (1930), such 
frequencies could be related to variations in the 

earth’s orbital parameters. It appeared plausible 
therefore that causes of climatic variations should 
be associated with this external astronomical 
forcing. Studies using energy-balance models were 
able to reproduce the smaller 4 x lo4 and 2 x lo4 
peaks when including such a forcing. However, no 
response is present which would correspond to the 
lo5 year cycle. Hasselman (1976) pointed out the 
general possibility of short-time scale phenomena, 
modelled as stochastic perturbations, affecting 
long-term climate variations. Sutera (198 1) (here- 
after called S) has shown specifically that including 
such stochastic perturbations into an energy- 
balance model without deterministic external forc- 
ing, could lead to random transitions between the 
equilibria of the model. These transitions, it was 
shown, could have an average characteristic time of 
the order of lo5 years. The interpretation of two 
stable model equilibria as a glacial and interglacial 
climate was suggested. Similar ideas have been 
suggested by Nicolis and Nicolis (I98 I). This left 
open the question about the transitions between the 
two being actually periodic, with period lo5 years, 
as indicated by paleoclimatic records. 

The purpose of this article is to investigate the 
interaction between the effect of a small external 
periodic forcing (about 0.1% of the solar constant) 
with a period of lo5 years and the long-term effect 
of the random noise. The major conclusion is that 
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Interaction ruling animal collective behavior depends
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from a field study
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Numerical models indicate that collective animal behavior may
emerge from simple local rules of interaction among the individ-
uals. However, very little is known about the nature of such
interaction, so that models and theories mostly rely on aprioristic
assumptions. By reconstructing the three-dimensional positions of
individual birds in airborne flocks of a few thousand members, we
show that the interaction does not depend on the metric distance,
as most current models and theories assume, but rather on the
topological distance. In fact, we discovered that each bird interacts
on average with a fixed number of neighbors (six to seven), rather
than with all neighbors within a fixed metric distance. We argue
that a topological interaction is indispensable to maintain a flock’s
cohesion against the large density changes caused by external
perturbations, typically predation. We support this hypothesis by
numerical simulations, showing that a topological interaction
grants significantly higher cohesion of the aggregation compared
with a standard metric one.

animal groups " behavioral rules " flocking " self-organization

Collective behavior of large aggregations of animals is a truly
fascinating natural phenomenon (1). Particularly interesting

is the case when aggregations self-organize into complex pat-
terns with no need of an external stimulus (2). Prominent
examples of such behavior are bird flocks (3), fish schools (4) and
mammal herds (5). Apart from its obvious relevance in ethology
and evolutionary biology, collective behavior is a key concept in
many other fields of science, including control theory (6),
economics (7), and social sciences (8).

How does collective behavior emerge? Numerical models of
self-organized motion, inspired both by biology (9–15) and
physics (16–20), support the idea that simple rules of interaction
among the individuals are sufficient to produce collective be-
havior. Unfortunately, we have very scarce empirical informa-
tion about the precise nature of such rules. The main theoretical
assumptions (attraction among the individuals, short range
repulsion, and alignment of the velocities) are reasonable, but
generic, and there are as many different models as different ways
to implement these assumptions. Without decisive experimental
feedback it is difficult to select what is the ‘‘right’’ model and,
therefore, to understand what are the underlying fundamental
rules of animal collective behavior.

The main goal of the interaction among individuals is to
maintain cohesion of the group. This cohesion is a very strong
biological requirement, shaped by the evolutionary pressure for
survival: Stragglers and small groups are significantly more
prone to predation than animals belonging to large and highly
cohesive aggregations (4). Consider a flock of starlings under
attack by a peregrine falcon: The flock contracts, expands, and
even splits, continuously changing its density and structure. Yet,

no bird remains isolated, and soon the flock reforms as whole.
The question we want to answer is ‘‘what kind of interaction
maintains cohesion in such a robust way?’’

To grant cohesion, models make the sound assumption that
individuals align and attract each other, and that such interaction
decays with increasing distance between individuals. The vast
majority of models adopt a definition of ‘‘distance’’ that is the
same as in physics, i.e., metric distance. In a metric context, two
birds 5 m apart attract each other less than two birds 1 m apart.
Animals can estimate metric distance in various ways, including
stereovision, retinal image size, and optic flow (21). Thus, a
metric interaction seems natural. However, an interaction based
on metric distance may be unable to reproduce the density
changes typical of animal aggregations, because one would
expect cohesion to be lost when mutual distances become too
large compared with the interaction range. An alternative is
topological distance: The relevant quantity is how many inter-
mediate individuals separate two birds, not how far apart they
are. In this case, each individual interacts with a fixed number of
neighbors, irrespective of their metric distance. The crucial
difference between metric and topological interaction really
comes in when the density varies: In the topological case, two
birds 5 m apart in a sparse flock attract each other as much as
two birds 1 m apart in a denser flock, provided that the number
of individuals between the two birds is the same. Thus, in the
topological hypothesis, the strength of the interaction remains
the same at different densities. This interaction seems more
suitable to keep cohesion in the face of strong density fluctua-
tions. By means of empirical observations, we will show that the
topological paradigm is, in fact, more suitable.

Results
Structure is the foremost effect of interaction, and, conversely,
interaction is ciphered in the interindividual spatial structure.
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